Finite Volume/Immersed Boundary Solvers for Compressible Flows: Development and Applications

A thesis submitted in partial fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Mechanical Engineering by

Shuvayan Brahmachary

Department of Mechanical Engineering Indian Institute of Technology Guwahati Guwahati - 781 039 "The journey is the reward" — The Pirates (Steve Jobs)

Dedicated to Ma, Baba and Dada

CERTIFICATE

This is to certify that the work presented in the thesis entitled "Finite Volume/Immersed Boundary Solvers for Compressible Flows: Development and Applications" submitted by Shuvayan Brahmachary to Indian Institute of Technology Guwahati for the award of the degree of Doctor of Philosophy in Mechanical Engineering is a bona fide record of research work carried out by the student himself under our supervision and have not been submitted elsewhere for any degree or diploma.

Signature:

Date:

Supervisor: Dr. Ganesh Natarajan Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

Signature:

Date:

Supervisor: Prof. Niranjan Sahoo Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.

ACKNOWLEDGEMENT

Seems just like yesterday when I had enrolled for Ph.D, not knowing what laid in front of me. After 6 long years in this journey, I couldn't possibly come up with the names of all those people who have directly or indirectly helped me. Here are few important people who did.

I owe a huge debt of gratitude to my supervisors Dr. *Ganesh Natarajan* and Prof. *Niranjan Sahoo* for their guidance. They are responsible for shaping the thesis in its present form and without their support, all of this would be a distant dream. They have always been kind enough to accept my inefficiencies, provide a conducive environment for research and make me see the better side of the things. I consider myself to be extremely fortunate to have worked under them.

Sincere acknowledgements is in order for Dr. Vinayak Kulkarni, who has been a constant source of motivation. I am thankful to him for providing me with the opportunity to work with him as a JRF, especially before I was even a Ph.D scholar. That transition from a graduate student to a JRF was a defining point in my career. I take this opportunity to thank ISRO to provide us the financial support which were helpful towards achieving some of the contents of this thesis. I would also like to sincerely thank my DC members Prof. Anoop K. Dass, Dr. Deepak Sharma and Dr. Suresh Kartha, who were equally insightful and constructive in their comments towards my work. I sincerely thank Dr. Vibin Ramakrishnan for being my meditation instructor.

I have been blessed with very good friends on and off campus. Specifically, I would like to thank 'The League' comprising of my very good friend(s) Jay, Cookie and Abhi. Your presence outside of academics has been such a wonderful treat, including the memorable 'Sikkim trip'. I thank you for understanding all those days when I had to cancel on you guys at the last moment. Special mention goes to my friends: Sumit for being the guy that he is (omnipresent), Siddesh for being an ever-positive source and Snehasish for those interesting conversations. I can write endlessly about the days we have spent together on the campus but some things are better left unsaid; atleast not in a Ph.D thesis. I am deeply thankful to Mukesh Kumar for always fixing my lab PC and being extremely patient with me whenever I pulled his leg. I fondly remember some of the best food that you cooked for me and for that I must thank Vishnu for inviting me to his place on more than one occasion. I would like to thank

Shatru & Soni for dragging me to play badminton with them and taking pride in beating me (just don't forget you had a better badminton racket). It is only fitting for me to thank Dr. Simon Peter and Dr. Jitendra Patel for introducing me to certain concepts in IB and various other valuable inputs including LATFX. I hope to see you both some day in a conference, while IB is still a thing, at least for incompressible flows. I deeply thank Dr. Bhaskar Bora for always guiding me and being like a big brother to me. I acknowledge the fact that you possessed such an endearing personality which encouraged everyone else to stay grounded. Special thanks goes to Mandeep for helping me understand MGG, being my PUBG partner and so much more. While I am still figuring out to use *xfiq* properly, I am grateful to you for teaching me to draw quality images in *Tecplot*. I would also like to thank *Juan* for my first guitar lesson, the Shillong road trip and introducing me to 'SW's' music. I hope to see you pursue your Doctoral studies soon. I cannot sum up my appreciation for Jubajyoti in few lines and I will try not to. Kidding. I am very thankful indeed for your programming lectures (so many of them!). I have learned a lot from your passion towards programming and I wish I had more days to absorb even more. I would also like to convey my thanks to *Moni* for helping me correct glaring grammatical error in the thesis. While this thesis is not a finished article yet, I really appreciate your efforts. I am grateful to Soumya & Saibal for being so helpful in every aspect. Your assistance in last minute arrangements will always be remembered. I fondly appreciate Ali for his fresh perspective upon things and those games of Basketball. I would also like to thank Narendra Nanal for assisting me creating mesh in Gambit and Josef Runsten, a.k.a *jrunsten* from CFD online community in helping me generate three dimensional block structured mesh. My days in the campus have been specially memorable due to my juniors and I am extremely grateful to them for it. I acknowledge Rahul & Joe for some of the most brilliant discussions we had over the years, Naman, Nayan, Rachit, Prashant, Yash for exhibiting fun part of hostel life and Jai, Shobhit and Piyush for their witty remarks.

My family are the sole reason for my accomplishments, however small it may be. I feel a deep sense of gratitude towards my *Ma*, *Baba and Dada* who have been extremely patient, understanding and supportive throughout this journey and beyond. I deeply appreciate the sacrifices you have made for turning my dream to reality. I would also like to convey my gratitude to *Bhavi* for the moral support throughout.

Shuvayan

ABSTRACT

This thesis is devoted to the development of a robust and accurate Immersed Boundary/Finite Volume (IB-FV) framework for compressible flows and their applications to design and optimisation. The framework is devised by combining an unstructured data based finite volume flow solver with a sharp interface immersed boundary method. The finite volume flow solver employs limited linear reconstruction in conjunction with vanLeer and AUSM schemes for convective fluxes while central differencing is employed for viscous fluxes. A new approach to compute gradients, which are critical to the computation of inviscid and viscous fluxes, based on a variant of Gauss divergence theorem is proposed. The strategy referred to as Modified Green Gauss (MGG) reconstruction is a one-step approach but leads to marginally lesser dissipation and allows for the use of marginally higher Courant number than existing reconstruction techniques. A novel non-iterative variant of MGG reconstruction for non-orthogonal meshes is also described and its robustness in high-speed flows has been studied. A sharp-interface Immersed Boundary (IB) technique based on local reconstruction of the solution has been proposed for inviscid and viscous flows. The boundary conditions are imposed directly at the geometry interface and is employed to obtain the solution in the near vicinity of the solid(s). This reconstruction approach which also employs the finite volume solutions obtained away from the solid, is effectively an interpolation technique that does not strictly conserve the mass, momentum and energy. Two different strategies, based on inverse distance weighting (IDW) for inviscid flows and one-dimensional reconstruction (HCIB) for viscous flows are described and explained in this work. We show that the finite mass conservation errors diminish linearly with grid refinement and that the reconstruction approach does not degrade the nominal second-order accuracy of the flow solver. The IB-FV solver computes wall pressure and skin-friction distributions quite accurately, although the latter requires sufficient fine meshes in the vicinity of the body. However, finite levels of mesh refinement does not produce accurate heat flux estimates in laminar hypersonic flows past blunt geometries. We probe the possible causes of this under-prediction using an in-depth diagnostic analysis. The investigations indicate that errors due to temperature reconstruction which are linked to a loss in energy conservation are primarily responsible for the inaccurate estimation of wall heat-flux and stagnation point heat transfer. We prove using numerical experiments that the use of adaptive meshes and non-linear/non-polynomial interpolations do not improve the heat flux estimates and that the errors are larger as Reynolds and Mach numbers become higher. The utility of the FV and IB-FV frameworks proposed in this work are highlighted by their application to three selected problems of design and optimisation. These frameworks are employed in conjunction with variable fidelity approaches for the design of minimum drag geometries, scramjet intakes and supersonic nozzle. The large spectrum of canonical problems in this thesis over a wide range of Mach and Reynolds number indicate the efficacy of the IB-FV solver while also highlighting some of its drawbacks. The IB-FV framework, despite its limitations, is also found to be a promising tool to evolve multi-fidelity optimisation frameworks that can accelerate the design and optimisation in hypersonic flows.

CONTENTS

1 Introduction			
	1.1	Gradient reconstruction strategy	4
	1.2	Cartesian grid based methods	6
	1.3	Multi-fidelity framework for optimisation/design problems	11
	1.4	Objectives of the thesis	13
	1.5	Outline of the thesis	14
2	Gov	verning Equations and Mathematical Preliminaries	15
	2.1	Navier-Stokes equations	15
	2.2	Finite volume formulation	17
	2.3	Inviscid and viscous flux computations	19
		2.3.1 Inviscid flux discretisation	19
		2.3.2 Viscous flux discretisation	21
	2.4	Temporal discretisation	22
	2.5	Implementation of boundary conditions	22
		2.5.1 Supersonic inlet & outlet	23
		2.5.2 No-slip walls	23
		2.5.3 Inviscid wall or symmetry boundary	23
3	Mo	dified Green-Gauss Reconstruction	25
	3.1	Overview of Green–Gauss reconstruction	26
	3.2	Modified Green Gauss reconstruction	29
	3.3	Numerical studies	34
		3.3.1 Supersonic vortex flow	35
		3.3.2 Grashof vortex	38
		3.3.3 Hypersonic flow past compression ramp	40

	3.4	Summ	ary	43
4	Sha	rp Int	erface Immersed Boundary for Inviscid Flows	44
	4.1	Sharp	interface immersed boundary method	45
		4.1.1	Classification	46
		4.1.2	Reconstruction	46
	4.2	Discre	te Conservation	51
		4.2.1	Transonic flow past bump	51
		4.2.2	Supersonic flow past wedge	54
	4.3	Order	of accuracy study	56
	4.4	Nume	rical investigations	58
		4.4.1	Supersonic flow past a cone	59
		4.4.2	Hypersonic Flow past Sphere	61
		4.4.3	Hypersonic flow past a double ellipse	62
		4.4.4	Hypersonic flow in a scramjet intake	64
		4.4.5	Supersonic flow with moving bodies: Cylinder lift–off	67
		4.4.6	Shape optimisation: Minimum drag geometries in hypersonic flow	69
	4.5	Summ	ary	71
5	Sha	rp Int	erface Immersed Boundary for Viscous Flows	72
5	Sha 5.1	rp Int Hybri	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method	72 73
5	Sha 5.1	rp Int Hybri 5.1.1	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method	72 73 75
5	Sha 5.1	rp Int Hybri 5.1.1 5.1.2	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method	72 73 75 76
5	Sha 5.1	rp Int Hybri 5.1.1 5.1.2 5.1.3	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for pressure Reconstruction for temperature	72 73 75 76 76
5	Sha 5.1	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for temperature Reconstruction for density	72 73 75 76 76 77
5	Sha 5.1	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux	 72 73 75 76 76 76 77 78
5	Sha 5.1 5.2	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux	 72 73 75 76 76 76 77 78 80
5	Sha 5.1 5.2	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere	 72 73 75 76 76 77 78 80 80 80
5	Sha 5.1 5.2	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil	 72 73 75 76 76 77 78 80 80 81
5	Sha 5.1 5.2	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2 5.2.3	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil Transonic flow past biplane NACA0012 airfoil	 72 73 75 76 76 76 77 78 80 80 81 84
5	Sha 5.1 5.2	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2 5.2.3 5.2.4	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil Transonic flow past biplane NACA0012 airfoil Low supersonic flow past a 4% thick bump	 72 73 75 76 76 77 78 80 80 81 84 85
5	Sha 5.1	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil Low supersonic flow past a 4% thick bump Supersonic flow past NACA0012 airfoil	 72 73 75 76 76 77 78 80 80 81 84 85 87
5	Sha 5.1	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil Low supersonic flow past a 4% thick bump Supersonic flow past NACA0012 airfoil Hypersonic flow past a flat plate	 72 73 75 76 76 77 78 80 80 81 84 85 87 89
5	Sha 5.1	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil Low supersonic flow past a 4% thick bump Supersonic flow past a flat plate Hypersonic flow past a compression ramp	 72 73 75 76 76 77 78 80 80 81 84 85 87 89 90
5	Sha 5.1	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil Low supersonic flow past a 4% thick bump Supersonic flow past a flat plate Hypersonic flow past a compression ramp Hypersonic flow past a cylinder	 72 73 75 76 76 77 78 80 80 81 84 85 87 89 90 92
5	Sha 5.1	rp Int Hybrid 5.1.1 5.1.2 5.1.3 5.1.4 5.1.5 Nume 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.2.7 5.2.8 5.2.9	erface Immersed Boundary for Viscous Flows d Cartesian Immersed Boundary Method Reconstruction for velocities Reconstruction for pressure Reconstruction for temperature Reconstruction for density Calculation of wall pressure, shear stress and heat flux rical investigations Inviscid hypersonic flow past a hemisphere Subsonic flow past NACA0012 airfoil Low supersonic flow past a 4% thick bump Supersonic flow past a flat plate Hypersonic flow past a compression ramp Hypersonic flow past a cylinder	 72 73 75 76 76 77 78 80 80 81 84 85 87 89 90 92 95

6	Rev	visiting the Sharp Interface Immersed Boundary for Viscous Flows	98
	6.1	Resolution and reconstruction errors	99
	6.2	Studies with local grid refinement	03
	6.3	Selective solution reconstruction	06
	6.4	Alternate reconstruction approaches	08
	6.5	Dependence on freestream and wall conditions	11
	6.6	Discussions and remedial approaches	16
	6.7	Summary	19
7	App	blications Towards Design and Optimisation	20
	7.1	Aerodynamic shape optimisation of nose cone	21
	7.2	Design of scramjet inlets	31
	7.3	Design of optimal nozzle for supersonic flows	36
	7.4	Summary	40
8	Con	clusions and Future Scope 14	42
	8.1	Conclusions	42
	8.2	Scope of future work	45
Aj	Appendix A 1		
Pι	Publications 1		
Re	References 1		

LIST OF FIGURES

1.1 1.2 1.3	 (a) Overlapping grid approach (b) Cartesian cut-cell approach (a) Diffused-interface IB approach (b) sharp-interface IB approach (a) Interpolation scheme for ghost-cell (b) neighbouring points (NP) 	6 8 9
2.1	Cell nomenclature	18
2.2	Linear reconstruction for the cell centered scheme $\ldots \ldots \ldots \ldots$	20
3.1	(a) Cell geometry (b) nomenclature for non-orthogonal grid	26
3.2	Schematic for the supersonic vortex flow computational domain	36
3.3	Computational grid adopted (a) uniform (b) stretched (c) triangulated	37
3.4	(a) Numerical dissipation for inviscid isentropic vortex (b) behaviour of	
	numerical dissipation with limiter constant K	39
3.5	Computational grid adopted for flow past ramp	41
3.6	Steady-state convergence for flow past compression ramp at (a) $CFL =$	
	0.1 (b) $CFL = 0.175$	41
3.7	(a) C_f distribution for flow past compression ramp (b) P_w/q distribution	
	for flow past compression ramp	42
4.1	Classifications of cells in the immersed boundary finite volume (IB-FV)	
	solver	46
4.2	Schematic of reconstruction scheme where subscript j refers to the im-	
	mersed cell	47
4.3	Computational stencil for inverse-distance weighting (IDW) reconstruc-	
	tion	48
4.4	Computational domain for transonic flow past bump along with bound-	
	ary condition	52

4.5	Mach contours depicting normal standing shock for different grid (a)	
	150×50 (b) 225×75 (c) 300×100 (d) 450×150 (Min: 0, $\Delta : 0.117$,	-
	Max: 1.52) (Top:- IB-FV solver; Bottom:- FV solver on body fitted mesh)	53
4.6	Coefficient of pressure distribution along the surface of the body from	
	(a) IB-FV solver on non-conformal grid (b) FV solver on conformal grid	53
4.7	(a) Coefficient of pressure distribution along the surface of the body on	
	conformal and non-conformal mesh (b) Numerical entropy generation	
	along immersed cells	54
4.8	Variation of mass defect Δm with grid refinement	56
4.9	Computational domain for supersonic vortex flow	57
4.10	Order of accuracy for IB-FV (non-conformal grid) and FV (conformal	
	grid) using (a) L_2 norm (b) L_{∞} norm	58
4.11	Shock wave angle β with grid refinement	59
4.12	(a) Comparison of coefficient of pressure distribution with theoretical	
	correlation and body-fitted FV result (b) Coefficient of pressure dis-	
	tribution using IB-FV solver on two different grid resolution (zoomed	
	view)	60
4.13	Comparison of numerical Schlieren (below) and experimental Schlieren	
	(top) [116] for supersonic flow over cone	60
4.14	Comparison of (a) coefficient of pressure distribution obtained using	
	IB-FV solver with experimental data (b) shock shape obtained using	
	IB-FV solver with theoretical correlation	61
4.15	Comparison of numerical Schlieren (below) and experimental Schlieren	
	(top) [117] for hypersonic flow over sphere	62
4.16	(a) Uniform (b) non-uniform Cartesian grid employed in IB-FV solver	
	for flow over double–ellipse	62
4.17	(a) Coefficient of pressure distribution (b) Mach contours for double	
	ellipse (Min: $0, \Delta: 0.5, Max: 8.15$)	63
4.18	Entropy distribution on uniform and non-uniform grid	63
4.19	Scramjet geometry	64
4.20	Curvilinear grid used with struts immersed in it (every fourth grid line	
	shown)	65
4.21	Mach contours for scramiet simulations (Min: 0, Δ : 0.22, Max: 5.4).	66
4.22	(a) Center-line Mach number variation (b) Pressure coefficient distri-	
	bution along the surface of scramiet struts	66
4.23	Location of body and shock at time $t = 0$ s	67
4.24	Two numerical solutions	67
4.25	Two numerical solutions	67

4.26	Two numerical solutions	69
4.27	Optimal configuration of the axisymmetric forebody	70
5.1	Reconstruction for obtaining ϕ at immersed cells	75
5.2	(a) Comparison of shock shape with Billig correlation [118] (b) compar-	0.0
-	ison of numerical (bottom) and experimental (top) Schlieren	80
5.3	Comparison of normalised pressure coefficient with experimental data	0.1
- ,		81
5.4	(a) Computational domain (not to scale) (b) Non-uniform initial grid	82
5.5	Three levels of refinement across the NACA0012 airfoil at (a) leading-	~ ~
	edge portion (b) trailing-edge region	82
5.6	Surface distribution of (a) pressure coefficient C_p (b) skin-friction C_f	
	(c) C_f along region of separation	83
5.7	(a) Computational domain (not to scale) (b) Non-uniform initial grid .	84
5.8	Streamlines for flow past NACA0012 staggered airfoil (a) Jawahar and	
	Kamath [129] (b) Qiu et al. [130] (c) IB-FV $\dots \dots \dots \dots \dots \dots \dots \dots \dots$	84
5.9	Comparison of surface distribution of (a) pressure coefficient C_p and (b)	
	skin-friction coefficient C_f	85
5.10	(a) 4% thick bump in a channel configuration (b) non-uniform compu-	
	tational grid (c) enlarged portion of the bump with adapted grid	86
5.11	(a) Mach contour (Min: 0, Δ : 0.04, Max: 1.42)	87
5.12	Comparison of skin-friction coefficient C_f along the bump and wall with	
	[131]	87
5.13	(a) Computational domain (not to scale) (b) non-uniform adapted grid	87
5.14	Mach contour (Min: 0.2, Δ : 0.11, Max: 2.18)	88
5.15	Comparison of surface distribution of (a) pressure coefficient C_p and (b)	
	skin-friction coefficient C_f	88
5.16	Distribution along the surface of the wall for (a) wall pressure (b) Stan-	
	ton number with experimental data of Lillard and Dries $[133]$	89
5.17	(a) Ramp geometry (b) locally adapted grid (c) pressure contour for	
	flow past compression ramp (Min: 0, Δ : 51.66, Max: 620)	91
5.18	Comparison of (a) pressure coefficient C_p (b) skin-friction coefficient C_f	
	(c) Stanton number St with experimental data [109]	92
5.19	(a) Cylinder geometry (b) pressure contour for flow past cylinder (Min:	
	$0, \Delta: 5087, Max: 71220)$	93
5.20	Pressure distribution along the cylinder and its comparison with exper-	
	imental data [134]	93

5.21	(a) Sphere-cone model (b) pressure contour for flow past the sphere-cone	
	model (Min: 0, Δ : 5700, Max: 74930)	95
6.1	(a) Stair-step boundary (b) body conformal grid	100
6.2	Comparison of (a) pressure (b) skin-friction coefficient C_f	101
6.3	Distribution of near wall temperature	102
6.4	(a) Comparison of skin-friction coefficient C_f on adapted grid (b) en-	
	larged view of adapted grid	103
6.5	Distribution of (a) near wall temperature (b) normalised wall heat flux	
	q/q_o	104
6.6	Comparison of skin-friction coefficient C_f along the cylinder on the	
	adapted grid	104
6.7	Comparison of (a) skin-friction coefficient C_f (b) wall heat-flux	106
6.8	Comparison of near wall temperature along the cylinder	107
6.9	Comparison of (a) pressure coefficient C_p (b) skin-friction coefficient C_f ,	
	along the cylinder	109
6.10	Comparison of skin-friction C_f along the cylinder for freestream Mach	
	number (a) 2.0 (b) 3.5 (c) 5.0	111
6.11	Comparison of near wall temperature distribution for freestream Mach	
	number (a) 2.0 (b) 3.5 (c) 5.0	112
6.12	Comparison of skin-friction C_f along the cylinder for freestream Reynolds	
	number (a) 500 (b) 5000	113
6.13	Comparison of near wall temperature distribution for freestream Reynolds	
	number (a) 500 (b) 5000	113
6.14	Comparison of (a) pressure (b) skin-friction coefficient C_f , along the	
	cylinder	114
6.15	Distribution of skin temperature	114
7.1	Flowchart describing the proposed multi-fidelity optimisation framework	124
7.2	Optimal bodies at different l/d	124
7.3	Semi–vertex angle θ_{LE} of optimal bodies for different l/d	126
7.4	Convergence acceleration for maximum C_d body at $l/d=2$	127
7.5	Convergence acceleration for minimum β body at $l/d=6$	127
7.6	Min. C_d body at $l/d = 2$	127
7.7	Max. β body at $l/d = 6$	127
7.8	Cross-objective performance for different l/d	128
7.9	Heat flux distribution along the length of the maximum β body at $l/d{=}6$	129
7.10	Heat flux distribution for optimal bodies at $l/d=6$	129

7.11	Scramjet inlet schematic representation where β and θ represent the
	shock and flow-deflection angle respectively
7.12	Low-fidelity flowchart
7.13	Total pressure recovery obtained from LF framework $\hdots \hdots \hdot$
7.14	Flow non-uniformity in the isolator
7.15	Mach contour for the scramjet intake configuration (a) $n=3$, $m=1$ (bot-
	tom) (b) $n=3, m=2$ (top) (Min: 0, Δ : 0.888, Max: 8.0)
7.16	Variable area nozzle
7.17	Schematic of the nozzle configuration
7.18	Convergence history
7.19	Optimal nozzle configuration obtained from LFF
7.20	Mach contour obtained from IB-FV flow solver for the optimal nozzle
	configuration (Min: 0.05, Δ :0.0493, Max: 3.45)
7.21	Comparison of Mach number obtained from both flow solvers 140

LIST OF TABLES

3.1	The algorithm for MGG reconstruction	33
3.2	Numerical dissipation produced in terms of ΔS	38
3.3	Comparison of computational time to achieve steady-state solution us-	
	ing SGG and MGG reconstructions for hypersonic flow past compression	
	ramp. The blanks indicate that the solution process did not converge $\ . \ 4$	11
4.1	Mass defect Δm on different grids	55
4.2	Position of centre of mass of cylinder (in m) at time $t = 0.30085s$ (39
5.1	Comparative study showing point of separation and force coefficients . 8	32
5.2	Comparison of stagnation point heat flux q_o	94
5.3	Comparison of total force on the body	96
5.4	Comparison of stagnation point heat flux q_o	96
6.1	Comparison of stagnation point heat flux q_o)2
6.2	Comparison of stagnation point heat flux q_o in adapted grid $\ldots \ldots 10^{10}$)3
6.3	Comparison of stagnation point heat flux q_o on the adapted grid 11	10
7.1	Flow conditions	25
7.2	Total computational time in hours for MFF and HFF frameworks. The	
	number of optimisation cycles is indicated in parentheses	27
7.3	Stagnation point heat flux and heat load at $l/d = 2$ and $6 \dots \dots 13$	30
7.4	Comparison of LF and HF frameworks at $M_{\infty}=8$ for the $n=3$ and $m=2$	
	configuration	35
7.5	Low-fidelity flow solver	37
A	The flux formulas for the vanLeer and AUSM scheme are given in the	
	Table below $\ldots \ldots 1^{4}$	17

CHAPTER 1

INTRODUCTION

"Heavier-than-air flying machines are impossible"

- Lord Kelvin, 1895, On sustainable flight

"Houston, Tranquility Base here. The Eagle has landed"

- Neil Armstrong, 1969, On moon landing

H igh speed flows has been a subject matter of great interest to various groups of researchers as well as commoners. The unwavering desire to mimic bird's flight has propelled businessman turned inventors the Wright brothers, into discovering the "flying-machine" in 1903, which since then has seen tremendous alterations by scientist, in arriving at today's interplanetary flight vehicles [1]. The remarkable leap of such structural design in the last century has foreseen many hurdles which were primarily caused by the highly complex flow features, one of which include the infamous crash of Ralph Virden P-38 aircraft in 1941. This incident was attributed to the "compressibility effects" which was later addressed by NACA Langley Memorial Laboratory and Ames Aeronautical Laboratory. What followed this unfortunate incident was the re-embarkment of humankind into a new flow regime of supersonic flow where the so-called "Mach barrier" was crossed by Chuck Yeager in 1947 in his Bell X-1. This was soon followed by the first hypersonic flight by Robert White at Mach number of 5.3 in his X-15.

This remarkable feat was made possible by countless hours of research carried out by scientist to generate highly precise experimental data and empirical correlations.