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ABSTRACT

This thesis is devoted to the development of a robust and accurate Immersed
Boundary/Finite Volume (IB-FV) framework for compressible flows and their ap-
plications to design and optimisation. The framework is devised by combining an
unstructured data based finite volume flow solver with a sharp interface immersed
boundary method. The finite volume flow solver employs limited linear reconstruction
in conjunction with vanLeer and AUSM schemes for convective fluxes while central
differencing is employed for viscous fluxes. A new approach to compute gradients,
which are critical to the computation of inviscid and viscous fluxes, based on a variant
of Gauss divergence theorem is proposed. The strategy referred to as Modified Green
Gauss (MGG) reconstruction is a one-step approach but leads to marginally lesser
dissipation and allows for the use of marginally higher Courant number than existing
reconstruction techniques. A novel non-iterative variant of MGG reconstruction for
non-orthogonal meshes is also described and its robustness in high-speed flows has
been studied. A sharp-interface Immersed Boundary (IB) technique based on local
reconstruction of the solution has been proposed for inviscid and viscous flows. The
boundary conditions are imposed directly at the geometry interface and is employed
to obtain the solution in the near vicinity of the solid(s). This reconstruction approach
which also employs the finite volume solutions obtained away from the solid, is effec-
tively an interpolation technique that does not strictly conserve the mass, momentum
and energy. Two different strategies, based on inverse distance weighting (IDW) for
inviscid flows and one-dimensional reconstruction (HCIB) for viscous flows are de-
scribed and explained in this work. We show that the finite mass conservation errors
diminish linearly with grid refinement and that the reconstruction approach does not
degrade the nominal second-order accuracy of the flow solver. The IB-FV solver com-
putes wall pressure and skin-friction distributions quite accurately, although the latter
requires sufficient fine meshes in the vicinity of the body. However, finite levels of
mesh refinement does not produce accurate heat flux estimates in laminar hypersonic
flows past blunt geometries. We probe the possible causes of this under-prediction
using an in-depth diagnostic analysis. The investigations indicate that errors due to
temperature reconstruction which are linked to a loss in energy conservation are pri-
marily responsible for the inaccurate estimation of wall heat-flux and stagnation point
heat transfer. We prove using numerical experiments that the use of adaptive meshes
and non-linear/non-polynomial interpolations do not improve the heat flux estimates
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and that the errors are larger as Reynolds and Mach numbers become higher. The
utility of the FV and IB-FV frameworks proposed in this work are highlighted by their
application to three selected problems of design and optimisation. These frameworks
are employed in conjunction with variable fidelity approaches for the design of min-
imum drag geometries, scramjet intakes and supersonic nozzle. The large spectrum
of canonical problems in this thesis over a wide range of Mach and Reynolds number
indicate the efficacy of the IB-FV solver while also highlighting some of its drawbacks.
The IB-FV framework, despite its limitations, is also found to be a promising tool
to evolve multi-fidelity optimisation frameworks that can accelerate the design and
optimisation in hypersonic flows.
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CHAPTER 1

INTRODUCTION

“Heavier-than-air flying machines are impossible”

- Lord Kelvin, 1895, On sustainable flight

“Houston, Tranquility Base here. The Eagle has landed”

- Neil Armstrong, 1969, On moon landing

High speed flows has been a subject matter of great interest to various groups
of researchers as well as commoners. The unwavering desire to mimic bird’s flight
has propelled businessman turned inventors the Wright brothers, into discovering the
“flying-machine” in 1903, which since then has seen tremendous alterations by sci-
entist, in arriving at today’s interplanetary flight vehicles [1]. The remarkable leap
of such structural design in the last century has foreseen many hurdles which were
primarily caused by the highly complex flow features, one of which include the infa-
mous crash of Ralph Virden P-38 aircraft in 1941. This incident was attributed to
the “compressibility effects” which was later addressed by NACA Langley Memorial
Laboratory and Ames Aeronautical Laboratory. What followed this unfortunate inci-
dent was the re-embarkment of humankind into a new flow regime of supersonic flow
where the so-called “Mach barrier” was crossed by Chuck Yeager in 1947 in his Bell
X-1. This was soon followed by the first hypersonic flight by Robert White at Mach
number of 5.3 in his X-15.

This remarkable feat was made possible by countless hours of research carried out
by scientist to generate highly precise experimental data and empirical correlations.
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